MAMIBIA UTIVERSITY OF SCIERCE AMDTECHOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science; Bachelor of Science in Applied Mathematics and Statistics			
QUALIFICATION CODE:	07BOSC; 07BSAM	LEVEL:	6
COURSE CODE:	CLS601S	COURSE CODE:	CALCULUS 2
SESSION:	NOVEMBER 2022	PAPER:	THEORY
DURATION:	3 HOURS	MARKS:	100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER:	DR. DSI IIYAMBO
MODERATOR:	DR. N CHERE

INSTRUCTIONS

1. Attempt all the questions in the booklet provided.
2. Show clearly all the steps used in the calculations.
3. All written work must be done in black or blue inked, and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

Question 1.

Find a function f satisfying the following conditions.

$$
f^{\prime \prime}(x)=6 e^{2 x}, \quad f(0)=-3 \text { and } f^{\prime}(0)=2
$$

Question 2.

Evaluate each of the following integrals
a) $\int \frac{\sqrt{\sqrt{x}+5}}{\sqrt{x}} d x$
b) $\int\left(2^{x}+5 \sec 2 x \tan 2 x-\frac{\arctan x}{1+x^{2}}\right) d x$
c) $\int_{0}^{\frac{\pi}{2}} \frac{4 \cos x}{1+\sin ^{2} x} d x$
d) $\int 3 x \ln 2 x d x$
e) $\int_{0}^{3} \frac{1}{\sqrt{3-x}} d x$

Question 3.

Find the area of the region bounded by the graphs of the equations $y=x^{4}-2 x^{2}$ and $y=2 x^{2}$.

Question 4.

In each of the following cases, calculate the volume of the solid generated when the area of the region bounded by the given curves is revolved around the stated axis.
a) $y=\sin x, x$-axis, $x=0, x=\pi$ around the y-axis.
b) $y=x^{2}, x$-axis, $x=1, x=3$ around the x-axis.

Question 5.

a) Approximate the following integral using the Trapezoid Rule with $n=4$.

$$
\begin{equation*}
\int_{0}^{2 \pi} \sin 2 x d x \tag{9}
\end{equation*}
$$

b) Calculate the arc length of the graph of the function $f(x)=\ln (\sec x)$ on the interval $\left[0, \frac{\pi}{4}\right]$.

Question 6.

Determine whether the following series is absolutely convergent, conditionally convergent or divergent.

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{n} n^{2}}{(2 n)!}
$$

Question 7.

Find the radius and interval of convergence of the following power series.

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{(x-2)^{n}}{\left(2^{n}\right)(n)}
$$

